Galaxy Phase-Space and Field-Level Cosmology: The Strength of Semi-Analytic Models
Published in arxiv, 2025
SAMs are just what we need for field-level cosmology
NatalĂ S. M. de Santi et al 2025 arXiv https://arxiv.org/abs/2512.10222
Published in arxiv, 2025
SAMs are just what we need for field-level cosmology
NatalĂ S. M. de Santi et al 2025 arXiv https://arxiv.org/abs/2512.10222
Published in A&A, 2025
Normalizing flows, Gaussian Likelihood and regression to classification solving halo-galaxy scatter problem
Rodrigues, N. V. N., de Santi, N. S. M., Abramo, R., et al. 2025, AAP. doi:10.1051/0004-6361/202453284 https://www.aanda.org/articles/aa/full_html/2025/06/aa53284-24/aa53284-24.html
Published in JCAP, 2025
GNNs can deal with observational effects
de Santi, N. S. M., Villaescusa-Navarro, F., Raul Abramo, L., et al. 2025, JCAP. doi:10.1088/1475-7516/2025/01/082 https://iopscience.iop.org/article/10.1088/1475-7516/2025/01/082
Published in ApJ, 2023
Why does Astrid is so good for getting robust models?
Ni, Y., Genel, S., Anglés-Alcázar, D., et al. 2023, ApJ, 959, 2, 136. doi:10.3847/1538-4357/ad022a https://iopscience.iop.org/article/10.3847/1538-4357/ad022a
Published in ApJ, 2023
Using symbolic regression to understand GNNs
Shao, H., de Santi, N. S. M., Villaescusa-Navarro, F., et al. 2023, ApJ, 956, 2, 149. doi:10.3847/1538-4357/acee6f https://iopscience.iop.org/article/10.3847/1538-4357/acee6f
Published in RASAB2023, 2023
Image denoising for a robust model
de Santi, N. S. M. and Abramo, L. R. 2023 https://sab-astro.org.br/wp-content/uploads/2023/04/NataliSolerMatubarodeSanti.pdf
Published in arXiv, 2023
NF for mapping the halo-galaxy connection using cosmological parameters and CAMELS
Lovell, C. C., Hassan, S., Anglés-Alcázar, D., et al. 2023, arXiv:2307.06967. doi:10.48550/arXiv.2307.06967 [https://arxiv.org/abs/2307.06967](https://arxiv.org/abs/2307.06967)
Published in MNRAS, 2023
Regression to classification solving halo-galaxy scatter problem
Natália V N Rodrigues, Natalà S M de Santi, et al., 2023, https://doi.org/10.1093/mnras/stad1186 https://doi.org/10.1093/mnras/stad1186
Published in ApJ, 2023
First ML robust method to predict $\Omega_{m}$
NatalĂ S. M. de Santi et al 2023 ApJ 952 69 https://iopscience.iop.org/article/10.3847/1538-4357/acd1e2/meta
Published in Blucher Physics Proceedings, 2022
First steps to improve cosmological covariance matrices
de Santi, N. S. M. and Abramo, L. R. 2022, DOI: 10.5151/astrocientistas2021-11 https://www.proceedings.blucher.com.br/article-details/primeiros-passos-na-obteno-de-parmetros-cosmolgicos-utilizando-matrizes-de-covarincia-cosmolgicas-sem-rudo-37453
Published in JCAP, 2022
Image denoising for a robust model
de Santi, N. S. M. and Abramo, L. R. 2022, DOI:10.1088/1475-7516/2022/09/013 https://iopscience.iop.org/article/10.1088/1475-7516/2022/09/013
Published in MNRAS, 2022
First approach: stacked methods and SMOGN
NatalĂ S. M. de Santi, et al. 2022, https://doi.org/10.1093/mnras/stac1469 https://doi.org/10.1093/mnras/stac1469
Published in Springer, 2022
First steps to the halo-galaxy connection
de Santi, N. S. M. and et al., 2023 https://link.springer.com/book/10.1007/978-3-031-34167-0
Published in Brazilian Journal of Physics, 2019
This paper contains the numerical results from my Masters.
de Santi, N.S.M., Santarelli, R., 2019. https://doi.org/10.1007/s13538-019-00708-y https://link.springer.com/article/10.1007%2Fs13538-019-00708-y
Published in Revista Brasileira de Ensino de FĂsica, 2019
This paper comprehends a first part of my Masters.
Santi, Natali Soler Matubaro de, & Santarelli, Raphael. 2019. https://doi.org/10.1590/1806-9126-rbef-2018-0312 http://www.scielo.br/pdf/rbef/v41n3/1806-9126-RBEF-41-3-e20180312.pdf